MNIST Digit Classification + Interactive Draw- Predict
Demo (Keras/TensorFlow)

I'm building this blog as a portfolio of machine learning engineering work. This post documents an
end-to-end project we created in this chat: a handwritten digit classifier trained on MNIST,
implemented in Keras with a TensorFlow backend, plus an interactive "draw a digit with your
mouse - run inference” canvas embedded directly inside a Google Colab notebook.

The point is not “MNIST is hard." It is not. The point is that it is a compact environment where | can
demonstrate the full lifecycle:

- data ingestion and preprocessing,

- model definition and training,

- disciplined evaluation on held-out data,

« error analysis (confusion matrix, precisionfrecall/F1),
- model persistence (save/reload),

- and a user-facing inference interface with real distribution shift issues.

If you want a single sentence summary: | trained a deep learning model and then treated inference
as a product problem.

1. What We Built (Systems View)
The Colab notebook contains two “planes” of functionality.

1.1 Training plane (offline learning)
1. Load MNIST from tensorflow.keras.datasets.mnist.
2. Preprocess:
+ normalize pixel intensities to [0, 1],
- reshape into the input form the model expects,
- one-hot encode the labels for cross-entropy.
3. Define a neural network classifier in Keras.
4. Train with minibatches, track training and validation curves.
5. Evaluate once on a held-out test set.
6. Report a confusion matrix and a classification report.

7. Save the model artifact and verify it reloads cleanly.

1.2 Inference plane (interactive)

1. Render an HTML canvas in the notebook output.

2. Capture the user's drawing as a PNG (base64 data URL).
3. Ship it back to Python via Colab's callback bridge.

4. Preprocess the drawing into an MNIST-like 2¢ i 3 image:

- crop, resize, pad, center-of-mass alignment,

+ normalize,

- reshape to the model's input tensor.
5. Run model.predict and show:

- predicted class,

+ top-k probabilities,

- the processed 28x28 image that the model actually saw.

That last bullet is the engineering punchline: show the model input, not just the Ul drawing. Most
inference failures are input-contract failures.

2. Data: MNIST and the Learning Problem

MNIST consists of 70,000 grayscale images of handwritten digits:
- Training set: 60,000 samples

+ Test set: 10,000 samples (held out)

Each input is € R*** and label ¥ € {0. .9} We learn a conditional distribution Pa(¥ |)
parameterized by 6.

From the standpoint of statistical learning, training is maximum likelihood:

N
e* — argmﬂax]___[pg(yi | xi)

i=1

Equivalently, we minimize negative log likelihood (NLL):

N
¥ - 1
6 = argm;nﬁjgl(—logp, (v, | x;))
The practical implementation is softmax cross-entropy.

2.1 Dataset splits and leakage discipline

A model’s job is to generalize. The only honest measure of generalization is performance on data
that was not used for training or hyperparameter selection.

Split What it's for What | use it for

Training Parameter learning Gradient updates

Validation Model selection Monitoring curves, early stopping decisions
Test Final estimate Once, at the end, for reporting

A common error is to “peek” at the test set while tuning. That converts the test set into an implicit
validation set and biases performance upward.

3. From Pixels to Tensors: Preprocessing

The baseline model in the notebook is a dense network, so the image must be vectorized:
vec(z) € R™

3.1 Normalization

Original pixels are integers in [0. 255 We scale:

This improves numerical conditioning and gradient scale. Without normalization, the network can
still learn, but optimization is less stable and learning rate sensitivity increases.

3.2 One-hot labels

We represent labels as ¥ € {0, 1} s cross-entropy can be written compactly:

y=1(0,0,0,1,0,0.0,0,0,0) for digit 3.

4. Neural Networks: Theory and Mechanics

A feedforward neural network is a composition of affine maps and nonlinearities. For layer (:
G:M=u'|!|h\i]|+b|i>‘ h\i|=0|!|fa|h)

with 2”) = z. The final layer produces logits = € E'’. Softmax maps logits to a probability simplex.
4.1 Expressivity, depth, and inductive bias

Universal approximation results tell us “a sufficiently wide network can approximate many functions.”
But engineering practice cares about:
- sample efficiency (how much data is required),

- generalization (how well it performs on unseen data),
- optimization (whether it trains at all).
Architectures that encode the right inductive bias learn more efficiently. CNNs encode locality and

translation structure; dense networks do not. This is why CNNs dominate vision even when dense
nets can, in principle, represent the same functions.

4.2 Activation functions and gradient flow

Training deep networks is a gradient propagation problem. Saturating nonlinearities like sigmoid can
cause vanishing gradients when x| is large. RelLl oids saturation for positive inputs and yields
piecewise-linear behavior, which is generally easi.. to optimize.

The derivative matters:
« Sigmoid: 7(x) = a(z)(1 — a(x)) (can be tiny)

- ReLU: ReLU(z) = 1, (stable, but “dead ReLUs" exist)

5. Optimization: Backpropagation, Cross-Entropy, and Calculus
5.1 Backpropagation as chain rule

Backprop is the chain rule applied systematically through the computation graph. For a = Wz + b,
h=¢(a), loss £(h);

9L _9L ; OL_IL L _ 0L

W a’' b Oa Oz Ja
and

%—%O (a)

3a ok >0

The elegance is that gradients localize: each module only needs local derivatives and upstream
gradients.

5.2 Softmax

Given logits z € RY (for MNIST, K = 10):

e
softmax(z), = e

Z_j:] €

Softmax is invariant to adding a constant to all logits:

softmax(z) = softmax(z + ¢1)

Numerically, we stabilize with = — max(z) to prevent overflow.

5.3 Cross-entropy [negative log likelihood

For one-hot ¥ and predicted probabilities P:
K
L(y.P) ==Yy logh,
=1

If ¥ is the correct class, this simplifies to:

£ =—logp,

A very useful identity for softmax + cross-entrop,‘l',:

9 _o
3:_p y

5.4 Stochastic gradient descent and minibatches

In practice we compute gradients on minibatches B:
v£(6) . D VeE(8)
|Bl<

This reduces compute cost and injects noise that can act as implicit regularization (especially in
overparameterized regimes).

5.5 Geometry and curvature intuition

Curvature matters. A local second-order approximation is:
L0+ A) = £(0) +VL(O)TA+ %ATH(B)A

where #1(9) is the Hessian. The learning rate 7 interacts with Auax, the largest eigenvalue of H. If 7is
too large relative to curvature, you diverge or bounce.

6. Regularization: Why Generalization Happens

Regularization is not optional in modern deep learning: it's how we turn high-capacity models into
generalizing systems.

6.1 L2 regularization (weight decay)

Add a penalty to discourage large weights:

Lreg(8) = £(6) + A3

Gradient update becomes:

G+ 0—7n (VL) +2)0)

Interpretation: shrinkage favors smoother functions and reduces sensitivity to pixel-level noise.
6.2 Dropout
Dropout samples a Bernoulli mask m and applies it to activations. With inverted dropout:

= !
AL ©h] m; ~ Bernoulli(1 — p)
1-p

Dropout can be seen as approximate model aver~~ing over exponentially many subnetworks; it often
improves robustness for dense nets. +

6.3 Early stopping

Early stopping halts training when validation performance stops improving. In a sense, it limits the
effective capacity used during optimization.

6.4 Implicit regularization of SGD/Adam
Optimization dynamics themselves can bias solutions. SGD often prefers “flatter minima,” which

correlate empirically with better generalization in many regimes. It's not a single theorem that
explains deep learning, but it is a real phenomenon that influences practice.

7. CNNs: Why Convolution Wins for Images
Dense networks throw away geometry by flattening pixels. CNNs preserve geometry and exploit it.
7.1 Convolution operator
For input X and kernel K, the (valid) 2D convolution is:
ky—1k—1

(Y=X*K)[i,j] = Z z X[i +u, j + v]K[u,]

u=0 v=0

Deep learning libraries often implement cross-correlation (no kernel flip). The learned kernel
removes the practical distinction.

7.2 Locality, weight sharing, and equivariance
- Locality: early layers learn edges/corners from small neighborhoods.
- Weight sharing: the same detector is applied everywhere.

- Equivariance: translating input translates feature maps.

These properties match images, so CNNs learn faster and generalize better under translation/
handwriting variation.

7.3 Parameter efficiency
Dense 784->512: 784 - 512 = 401k weights.
32 conwv filters of 3x3: 32- 3 - 3 = 288 weights (per input channel, plus biases).

CNNSs spend parameters on patterns, not on positions.

8. Keras with TensorFlow Backend (Implementation Notes)

Keras is a high-level API that compiles a computation graph and runs it efficiently on CPU/GPU via
TensorFlow.

8.1 What model.fit() actually does

Even thouah it is one call. it orchestrates:

6.3 Early stopping

Early stopping halts training when validation performance stops improving. In a sense, it limits the
effective capacity used during optimization.

6.4 Implicit regularization of SGD/Adam
Optimization dynamics themselves can bias solutions. SGD often prefers “flatter minima,” which

correlate empirically with better generalization in many regimes. It's not a single theorem that
explains deep learning, but it is a real phenomenon that influences practice.

7. CNNs: Why Convolution Wins for Images
Dense networks throw away geometry by flattening pixels. CNNs preserve geometry and exploit it.
7.1 Convolution operator
For input X and kernel K, the (valid) 2D convolution is:
k=1 k-1

(Y=X*K)[i,d] =3 > X[i+u,j+ v|K[u,]

u=0 v=0

Deep learning libraries often implement cross-correlation (no kernel flip). The learned kernel
removes the practical distinction.

7.2 Locality, weight sharing, and equivariance
- Locality: early layers learn edges/corners from small neighborhoods.
« Weight sharing: the same detector is applied everywhere.

- Equivariance: translating input translates feature maps.

These properties match images, so CNNs learn faster and generalize better under translation/
handwriting variation.

7.3 Parameter efficiency
Dense 784->512: 784 - 512 =~ 401k weights.
32 conv filters of 3x3: 32 - 3 -3 = 288 weights (per input channel, plus biases).

CNNs spend parameters on patterns, not on positions.

8. Keras with TensorFlow Backend (Implementation Notes)

Keras is a high-level API that compiles a computation graph and runs it efficiently on CPU/GPU via
TensorFlow.

8.1 What model.fit() actually does

If W,; ~ N(0,0%) and inputs are roughly i.i.d., then Var(Wz) ~ no?Var(z). For ReLU networks,
maintaining variance suggests He initialization:

10. Measuring Model Performance and Accuracy

10.1 Accuracy

Accuracy is the fraction correct on the test set. It is necessary but not sufficient.

10.2 Confusion matrix

The confusion matrix Cij counts predictions j when the true label is i. Normalizing rows yields per-
class confusion probabilities. This reveals systematic confusions like 4 vs 9 or 3 vs 5 (depending on
handwriting style).

10.3 Precision [recall / F1

For a class k:

TP,
TP, + FP’

TP,

pr(‘(‘isionk . W
I 1V

recall, =

precision,, - recall,

Fl,=2-. —
precision;. + recall,.

These metrics become essential when costs are asymmetric or classes are imbalanced.
10.4 Calibration (advanced but valuable)

Softmax probabilities are not guaranteed to be calibrated. A model can be accurate but
overconfident. For production systems, calibration matters because downstream decisions use
confidence thresholds. A useful extension is Expected Calibration Error (ECE) or reliability diagrams.

11. Interactive Inference: Draw a Digit with the Mouse

The interactive section uses an HTML canvas. When the user clicks Predict, JavaScript captures the
drawing as a PNG data URL and calls back into Python:

is (P Copy
google.colab.kernel.invokeFunction("mnist.predict_digit", [dataurll, {});

11.1 The real work: preprocessing the user’s sketch

A trained model expects training-like inputs. User drawings differ from MNIST (stroke width,
centering, scale, anti-aliasing). The notebook pe’ & ms a small but essential pipeline:

1. Convert to grayscale.

Appendix A: Information Theory, KL Divergence, and
Proper Scoring Rules

Cross-entropy is not just a convenient engineering choice; it is a principled objective for probability
estimation.

Let the true conditional label distribution be P(¥ | T) and the model be %(¥ | Z)_ The expected
negative log likelihood under the data distribution is:

[\J‘.y\"vp [7 lquﬂ(y | .I'}]

Condition on = and expand:

E,p | p(y|2)(—loggs(y | x))

y

Now relate it to conditional KL divergence:

: ply|z)
KL (p(- |) || go(- |)) = ;p{y | .r}]ngqﬂ(.y [2)

Rearrange:

S by | z) (—loggy(y | 2)) = H(p(- | x)) + KL (p(- |) | gu(- | 7))
v

The entropy term does not depend on #. Therefore minimizing cross-entropy is equivalent to
minimizing expected KL divergence. This is why cross-entropy is a proper scoring rule: it
incentivizes truthful probability estimates under the assumed model class.

Appendix B: Generalization and Capacity

Classical theory relates generalization error to hypothesis class complexity (VC dimension,
Rademacher complexity, margin bounds). Deep learning lives in a regime where parameter counts
can exceed sample counts, yet models generalize. Two complementary explanations matter in
practice:

1. Inductive bias of the architecture. CNNs restrict the functional form in a way that matches
images (locality, weight sharing). Even with many parameters, the effective function class is
structured.

2. Implicit bias of optimization. Gradient methods do not explore parameter space uniformly; they
preferentially find certain kinds of solutions (often low-norm or flat-minima solutions).

